
#Lakshmi Katravulapalli
#Cache Simulation Project Code

import sys

Variables to maintain the simulation statistics
Hit = 0
Miss = 0
reads = 0
writes = 0

def update_lru(address):
 # Logic for updating LRU policy
 # getting the set index
 set_idx = (address // BLOCK_SIZE) % NUM_SETS
 # getting the tag
 tag = address // BLOCK_SIZE
 # Checking if the tag already in the set of the cache, if it is there we have to
update the lru_position by making it the most recently used
 if tag in lru_position[set_idx][1]:
 lru_position[set_idx][0].remove(tag)
 lru_position[set_idx][0].append(tag)
 lru_position[set_idx][1][tag] = len(lru_position[set_idx][0]) - 1
 # if not there making the most recently used
 else:
 lru_position[set_idx][0].append(tag)
 lru_position[set_idx][1][tag] = len(lru_position[set_idx][0]) - 1

def simulate_access(op, address):
 # Getting tag and set_index
 set_idx = (address // BLOCK_SIZE) % NUM_SETS
 tag = address // BLOCK_SIZE
 # variable 'found' is used to check if the tag is found in the set.
 found = False
 global reads, writes
 # variable 'reads' contain no. of reads from the memory, 'writes' contain no. of
writes to the memory,
 for i in range(len(tag_array[set_idx])):
 # Go through each block in the set and check if the tag is found.
 if tag == tag_array[set_idx][i]:
 # If found increase Hit count, and make found=True
 global Hit
 found = True
 Hit += 1
 # If LRU replacement policy update the LRU position.
 if is_lru: # LRU policy is chosen
 update_lru(address)

 if op == 'W' and WB == True:
 # If the policy is write-back then make it dirty.
 dirty[tag] = True
 elif op == 'W':
 # If the policy is write through update write's count
 writes+= 1

 if not found:
 # If not found We increase the miss count and allocate the new block

 global Miss
 Miss += 1
 if len(tag_array[set_idx]) == ASSOC:
 # We check if there is no space in the set we have to evict the block using
the replacement policy
 if is_lru:
 # if LRU then we evict the least recently used tag.
 evicted = lru_position[set_idx][0].pop(0)
 # evict the block
 tag_array[set_idx].remove(evicted)
 del lru_position[set_idx][1][evicted]
 # if the evicted block is dirty we have to write to the memory
 if evicted in dirty:
 del dirty[evicted]
 # writes to memory increase
 writes+= 1
 elif is_fifo:
 # if FIFO then we evict the block that entered first.
 evicted = tag_array[set_idx].pop(0)
 # if the evicted block is dirty we have to write to the memory
 if evicted in dirty:
 del dirty[evicted]
 # writes to memory increase
 writes+= 1
 elif is_lifo:
 # if LIFO then we evict the block that entered last.
 evicted = tag_array[set_idx].pop()
 # if the evicted block is dirty we have to write to the memory
 if evicted in dirty:
 del dirty[evicted]
 # writes to memory increase
 writes+= 1
 # We allocate the block for new tag
 tag_array[set_idx].append(tag)
 # If LRU we update the LRU
 if is_lru: # LRU policy is chosen
 update_lru(address)
 if op == 'W' and WB == True:
 # If the policy is write-back then make it dirty.
 dirty[tag] = True
 elif op == 'W':
 # If the policy is write through update write's count
 writes+= 1
 # If it is miss then the read from memory occurs for both write and read
operations
 reads+=1

if __name__ == "__main__":
 # ./SIM <CACHE_SIZE> <ASSOC> <REPLACEMENT> <WB> <TRACE_FILE>
 arguments=sys.argv[1:]
 # Getting the Cache size
 CACHE_SIZE=int(arguments[0])
 # GEtting the Associativity of the cache
 ASSOC =int(arguments[1])
 if ASSOC==0:
 print("Associativity shouldn't be 0")

 BLOCK_SIZE = 64

 is_lru=False
 is_fifo=False
 is_lifo=False
 NUM_SETS = CACHE_SIZE // (BLOCK_SIZE * ASSOC) # Configure number of sets
 # Getting the replacement policy 0 for LRU, 1 for FIFO, 2 for LIFO.
 if arguments[2]=='0':
 is_lru=True
 elif arguments[2]=='1':
 is_fifo=True
 elif arguments[2]=='2':
 is_lifo=True
 # Getting the write policy option
 # 1 for writeback and 0 for write through
 WB=bool(int(arguments[3]))

 # tag_array represents the cache
 tag_array = [[] for _ in range(NUM_SETS)]

 # lru_position holds the tag values in least recently to most recent order.
 lru_position = [[[], {}] for _ in range(NUM_SETS)]
 # dirty dictionary holds if the block is dirty or not.
 dirty = {}
 with open(arguments[4], 'r') as file:
 for line in file:
 op, address = line.split()
 address = int(address, 16)
 simulate_access(op, address)

Print out the statistics
print(f"Hits: {Hit}")
print(f"Misses: {Miss}")
print(f"Reads: {reads}")
print(f"Writes: {writes}")
print(f"Miss ratio: {Miss/(Miss+Hit)}")

